Convergence of Iterative Scoring Rules
نویسندگان
چکیده
In multiagent systems, social choice functions can help aggregate the distinct preferences that agents have over alternatives, enabling them to settle on a single choice. Despite the basic manipulability of all reasonable voting systems, it would still be desirable to find ways to reach plausible outcomes, which are stable states, i.e., a situation where no agent would wish to change its vote. One possibility is an iterative process in which, after everyone initially votes, participants may change their votes, one voter at a time. This technique, explored in previous work, converges to a Nash equilibrium when Plurality voting is used, along with a tie-breaking rule that chooses a winner according to a linear order of preferences over candidates. In this paper, we both consider limitations of the iterative voting method, as well as expanding upon it. We demonstrate the significance of tie-breaking rules, showing that no iterative scoring rule converges for all tie-breaking. However, using a restricted tiebreaking rule (such as the linear order rule used in previous work) does not by itself ensure convergence. We prove that in addition to plurality, the veto voting rule converges as well using a linear order tie-breaking rule. However, we show that these two voting rules are the only scoring rules that converge, regardless of tie-breaking mechanism.
منابع مشابه
Convergence of iterative voting
In multiagent systems, social choice functions can help aggregate the distinct preferences that agents have over alternatives, enabling them to settle on a single choice. Despite the basic manipulability of all reasonable voting systems, it would still be desirable to find ways to reach a stable result, i.e., a situation where no agent would wish to change its vote. One possibility is an iterat...
متن کاملConvergence and Quality of Iterative Voting Under Non-Scoring Rules
Iterative voting is a social choice mechanism whereby voters are allowed to continually make strategic changes to their stated preferences until no further change is desired. We study the iterative voting framework for several common voting rules and show that, for these rules, an equilibrium may never be reached. We also consider several variations of iterative voting and show that with these ...
متن کاملOn new faster fixed point iterative schemes for contraction operators and comparison of their rate of convergence in convex metric spaces
In this paper we present new iterative algorithms in convex metric spaces. We show that these iterative schemes are convergent to the fixed point of a single-valued contraction operator. Then we make the comparison of their rate of convergence. Additionally, numerical examples for these iteration processes are given.
متن کاملConvergence of an Iterative Scheme for Multifunctions on Fuzzy Metric Spaces
Recently, Reich and Zaslavski have studied a new inexact iterative scheme for fixed points of contractive and nonexpansive multifunctions. In 2011, Aleomraninejad, et. al. generalized some of their results to Suzuki-type multifunctions. The study of iterative schemes for various classes of contractive and nonexpansive mappings is a central topic in fixed point theory. The importance of Banach ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Artif. Intell. Res.
دوره 57 شماره
صفحات -
تاریخ انتشار 2016